Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 15(4): 2170-2180, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38312068

RESUMEN

Vitamin K isoforms are known as co-factors for the synthesis of blood-clotting proteins, but several other bioactivities were reported. In this work, we isolated a vitamin K1-analogue (OH-PhQ) from the cyanobacterium Tychonema sp. LEGE 07196 with lipid reducing activity. OH-PhQ reduced neutral lipid reservoirs with an EC50 value of 31 µM after 48 h exposure in zebrafish larvae, while other vitamin K isoforms had EC50 values of 21.1 µM (K2) and 1.2 µM (K3). No lipid reducing activity was observed for K1 up to 50 µM. The presence of vitamin K isoforms was studied in zebrafish after exposure (OH-PhQ, K1, K2 and K3), and a clear preference for bioconversion was observed to retain K1 and OH-PhQ. Untargeted metabolomics revealed different biological effects for vitamin K isoforms on the subclass and metabolite level, but similarities were present on the compound class level, particularly on the regulation of glycerophospholipids. Our data showed for the first time a lipid reducing activity of OH-PhQ and performed a comparative analysis of vitamin K isoforms, which could be important for the development of future nutraceuticals or food supplements.


Asunto(s)
Vitamina K , Pez Cebra , Animales , Pez Cebra/metabolismo , Metabolismo de los Lípidos , Vitamina K 1/metabolismo , Isoformas de Proteínas/metabolismo , Lípidos , Vitamina K 2 , Vitamina K 3
2.
PeerJ ; 11: e15733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483977

RESUMEN

Faba bean water extract (FBW) and vitamin K3 (VK3) have been demonstrated to improve the muscle textural quality of fish. To better apply these two feed additives in commercial aquaculture setting, four experimental diets (control, commercial feed group; 15% FBW, 15% faba bean water extract group; 2.5% VK3, 2.5% vitamin K3 group; combined group, 15% faba bean water extract + 2.5% vitamin K3 group) were formulated to explore their combined effects of FBW and VK3 on the growth, health status, and muscle textural quality of grass carp. The growth performance, textural quality, intestinal characteristics, and oxidative and immune responses were analyzed on days 40, 80 and 120. The results showed that supplementation with higher doses of FBW and VK3 have no influence on growth-related parameters and immune parameters of grass carp. Notably, compared with the control, fish in the combined group had the highest textural qualities (hardness, chewiness and adhesiveness), followed by those in 15% FBW and 2.5% VK3 groups (P < 0.05). Also, FBW and VK3, to some extent, may lower antioxidative ability of grass carp, as illustrated by lower levels of GSH and CAT in 15% FBW, 2.5% VK3, and combined groups on day 120 (P < 0.05). In addition, enhanced lipase activity was observed in the 15% FBW group. Taken together, the combined supplementation of FBW and VK3 was demonstrated to be a more advanced option than their individual supplementation in a commercial setting owing to the resulting combined effects on both the textural quality and health status of grass carp.


Asunto(s)
Carpas , Vicia faba , Animales , Vitamina K 3 , Dieta , Inmunidad , Estrés Oxidativo
3.
Poult Sci ; 102(9): 102880, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37419050

RESUMEN

The aim of this work was to investigate the effects of dietary vitamin K3 (VK3) supplementation on production performance, egg quality, vitamin K-dependent proteins, and antioxidant properties in breeding geese during the laying period. A total of one hundred twenty 82-wk-old Wulong geese with similar body weights were randomly divided into 6 groups with 4 replicates and 5 geese each (1 male and 4 female). The geese in the control group were fed a basal diet, and the geese in the treatment groups were fed diets supplemented with different levels of VK3 (2.5, 5.0, 7.5, 10.0, and 12.5 mg/kg) for 11 wk. Dietary VK3 supplementation linearly and quadratically increased feed intake, egg mass, egg weight, and egg production (P < 0.05). Increasing VK3 levels linearly and quadratically increased albumen height, shell thickness and Haugh unit of eggs (P < 0.05). VK3 reduced osteocalcin (OC) and uncarboxylated osteocalcin (ucOC) levels in the serum. Dietary VK3 addition linearly decreased serum malondialdehyde (MDA) levels (P < 0.01). There was linear and quadratic effect in the activity of serum total superoxide dismutase (T-SOD) (P < 0.01), and linear effect in serum total antioxidant capacity (T-AOC) (P < 0.01). In conclusion, dietary VK3 supplementation enhanced the production performance, egg quality, vitamin K-dependent proteins, and antioxidant properties in breeding geese during the laying period. The optimal dose of dietary VK3 supplementation was 10.0 mg/kg.


Asunto(s)
Antioxidantes , Vitamina K 3 , Masculino , Femenino , Animales , Antioxidantes/metabolismo , Gansos/metabolismo , Vitamina K , Osteocalcina , Alimentación Animal/análisis , Pollos/metabolismo , Óvulo/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria
4.
ACS Appl Mater Interfaces ; 15(23): 27515-27532, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37264797

RESUMEN

Magnetic nanoparticle (MNP)-mediated magnetic hyperthermia (MHT) under an alternating magnetic field (AMF) causes tumor regression via reactive oxygen species (ROS) generation. However, less therapeutic efficacy has been reported due to the generation of low levels of ROS in a hypoxic tumor microenvironment. Therefore, improved treatments are required to generate relatively high levels of ROS to promote irreversible oxidative damage to the tumor cells. Herein, we report a magnetothermodynamic (MTD) therapy, as a robust and versatile approach for cancer treatment, by combining the magnetothermodynamic-related ROS and heat-related immunological effect in order to overcome the aforementioned obstacle. The synergistic therapy was achieved by the development of vitamin k3 (Vk3)-loaded copper zinc ferrite nanoparticles (Vk3@Si@CuZnIONPs) as an efficient MTD agent. The in vitro results unveiled that enhanced ROS production under the influence of AMF is a predominant aspect in yielding an assertive anticancer response. The in vivo antitumor response was assessed in an ectopic tumor model of A549 lung adenocarcinoma by MTD. The tumor inhibition rate of 69% was achieved within 20 days of MTD treatment, exhibiting complete tumor eradication within 30 days. The validation of antitumor response was marked by severe apoptosis (TUNEL, Caspase-3) in the Vk3@Si@CuZnIONPs + AMF-treated group. The higher expression level of heat shock proteins and proinflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1ß) was speculated to play a role in the activation of immune response for faster tumor regression in the MTD-treated group. Therefore, by implementing a dual ROS and heat-mediated immunogenic effect, the antitumor efficiency of future cancer magnetotherapies will be greatly enhanced.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Especies Reactivas de Oxígeno/metabolismo , Vitamina K 3/farmacología , Línea Celular Tumoral , Hipertermia Inducida/métodos , Campos Magnéticos , Inmunidad
5.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37186990

RESUMEN

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Vitamina K 3/farmacología , Vitamina K 3/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
6.
Mol Med Rep ; 27(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37144488

RESUMEN

The gut microbiota plays a key role in maintaining health and regulating the host's immune response. The use of probiotics and concomitant vitamins can increase mucus secretion by improving the intestinal microbial population and prevent the breakdown of tight junction proteins by reducing lipopolysaccharide concentration. Changes in the intestinal microbiome mass affect multiple metabolic and physiological functions. Studies on how this microbiome mass and the regulation in the gastrointestinal tract are affected by probiotic supplements and vitamin combinations have attracted attention. The current study evaluated vitamins K and E and probiotic combinations effects on Escherichia coli and Staphylococcus aureus. Minimal inhibition concentrations of vitamins and probiotics were determined. In addition, inhibition zone diameters, antioxidant activities and immunohistochemical evaluation of the cell for DNA damage were performed to evaluate the effects of vitamins and probiotics. At the specified dose intervals, L. acidophilus and vitamin combinations inhibit the growth of Escherichia coli and Staphylococcus aureus. It could thus contribute positively to biological functions by exerting immune system­strengthening activities.


Asunto(s)
Probióticos , Infecciones Estafilocócicas , Humanos , Lactobacillus acidophilus/fisiología , Escherichia coli , Staphylococcus aureus , Vitamina K 3/farmacología , Vitamina E/farmacología , Probióticos/farmacología , Vitaminas/farmacología , Vitamina K
7.
Biol Pharm Bull ; 46(1): 52-60, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288961

RESUMEN

Vitamin K, a necessary nutritional supplement for human, has been found to exhibit anti-inflammatory activity. In the present study, we investigated the effects of vitamin K family on lipopolysaccharide (LPS) plus nigericin induced pyroptosis and explored the underlying mechanism of its action in THP-1 monocytes. Results showed that vitamin K3 treatment significantly suppressed THP-1 pyroptosis, but not vitamin K1 or K2, as evidenced by increased cell viability, reduced cellular lactate dehydrogenase (LDH) release and improved cell morphology. Vitamin K3 inhibited NLRP3 expression, caspase-1 activation, GSDMD cleavage and interleukin (IL)-1ß secretion in pyrophoric THP-1 cells. In addition, vitamin K3 inhibited the pro-inflammatory signaling pathways including nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK). Vitamin K3 treatment also attenuated tissue damage and reduced serum LDH, IL-1ß and IL-6 levels in LPS-induced systemic inflammation of mice. The reduced myeloperoxidase (MPO) activityand F4/80 expression indicated that vitamin K3 effectively reduced the infiltration of neutrophils and macrophages. Moreover, NLRP3 expression in monocytes/macrophages were also decreased in vitamin K3-treatedmice after LPS challenge. These findings suggest that vitamin K3 potently alleviates systemic inflammation and organ injury via inhibition of pyroptosis in monocytes and may serve as a novel therapeutic strategy for patients with inflammatory diseases.


Asunto(s)
Sistema de Señalización de MAP Quinasas , FN-kappa B , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Vitamina K 3/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Células THP-1 , Lipopolisacáridos/farmacología , Inflamación
8.
Nutrients ; 14(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296903

RESUMEN

Vitamin K is the common name for a group of compounds recognized as essential for blood clotting. The group comprises phylloquinone (K1)-a 2-methyl-3-phytyl-1,4-naphthoquinone; menaquinone (K2, MK)-a group of compounds with an unsaturated side chain in position 3 of a different number of isoprene units and a 1,4-naphthoquinone group and menadione (K3, MD)-a group of synthetic, water-soluble compounds 2-methyl-1,4-naphthoquinone. However, recent epidemiological studies suggest that vitamin K has various benefits that go beyond blood coagulation processes. A dietary intake of K1 is inversely associated with the risk of pancreatic cancer, K2 has the potential to induce a differentiation in leukemia cells or apoptosis of various types of cancer cells, and K3 has a documented anti-cancer effect. A healthy diet rich in fruit and vegetables ensures an optimal supply of K1 and K2, though consumers often prefer supplements. Interestingly, the synthetic form of vitamin K-menadione-appears in the cell during the metabolism of phylloquinone and is a precursor of MK-4, a form of vitamin K2 inaccessible in food. With this in mind, the purpose of this review is to emphasize the importance of vitamin K as a micronutrient, which not only has a beneficial effect on blood clotting and the skeleton, but also reduces the risk of cancer and other pro-inflammatory diseases. A proper diet should be a basic and common preventive procedure, resulting in a healthier society and reduced burden on healthcare systems.


Asunto(s)
Vitamina K 1 , Vitamina K , Humanos , Vitamina K/farmacología , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo , Vitamina K 3/metabolismo , Daño del ADN , Micronutrientes , Agua
9.
Microbiol Spectr ; 10(5): e0199522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36000901

RESUMEN

Balneotherapeutic water springs, such as those with thermal, saline, sulfur, or any other characteristics, have recently been the subject of phylogenetic studies with a closer focus on the description and/or isolation of phylogenetically novel or biotechnologically interesting microorganisms. Generally, however, most such microorganisms are rarely obtained in pure culture or are even, for now, unculturable under laboratory conditions. In this culture-dependent study of radioactive water springs of Jáchymov (Joachimstahl), Czech Republic, we investigated a combination of classical cultivation approaches with those imitating sampling source conditions. Using these environmentally relevant cultivation approaches, over 1,000 pure cultures were successfully isolated from 4 radioactive springs. Subsequent dereplication yielded 121 unique taxonomic units spanning 44 genera and 9 taxonomic classes, ~10% of which were identified as hitherto undescribed taxa. Genomes of the latter were sequenced and analyzed, with a special focus on endogenous defense systems to withstand oxidative stress and aid in radiotolerance. Due to their origin from radioactive waters, we determined the resistance of the isolates to oxidative stress. Most of the isolates were more resistant to menadione than the model strain Deinococcus radiodurans DSM 20539T. Moreover, isolates of the Deinococcacecae, Micrococcaceae, Bacillaceae, Moraxellaceae, and Pseudomonadaceae families even exhibited higher resistance in the presence of hydrogen peroxide. In summary, our culturomic analysis shows that subsurface water springs contain diverse bacterial populations, including as-yet-undescribed taxa and strains with promising biotechnological potential. Furthermore, this study suggests that environmentally relevant cultivation techniques increase the efficiency of cultivation, thus enhancing the chance of isolating hitherto uncultured microorganisms. IMPORTANCE The mine Svornost in Jáchymov (Joachimstahl), Czech Republic is a former silver-uranium mine and the world's first and for a long time only radium mine, nowadays the deepest mine devoted to the extraction of water which is saturated with radon and has therapeutic benefits given its chemical properties. This healing water, which is approximately 13 thousand years old, is used under medical supervision for the treatment of patients with neurological and rheumatic disorders. Our culturomic approach using low concentrations of growth substrates or the environmental matrix itself (i.e., water filtrate) in culturing media combined with prolonged cultivation time resulted in the isolation of a broad spectrum of microorganisms from 4 radioactive springs of Jáchymov which are phylogenetically novel and/or bear various adaptive or coping mechanisms to thrive under selective pressure and can thus provide a wide spectrum of capabilities potentially exploitable in diverse scientific, biotechnological, or medical disciplines.


Asunto(s)
Radio (Elemento) , Radón , Uranio , Humanos , Adolescente , Filogenia , Agua , Peróxido de Hidrógeno , Plata , Vitamina K 3 , Bacterias , Azufre
10.
Biochem J ; 479(14): 1543-1558, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35789252

RESUMEN

The respiratory pathogen, Streptococcus pneumoniae has acquired multiple-drug resistance over the years. An attractive strategy to combat pneumococcal infection is to target cell division to inhibit the proliferation of S. pneumoniae. This work presents Vitamin K3 as a potential anti-pneumococcal drug that targets FtsZ, the master coordinator of bacterial cell division. Vitamin K3 strongly inhibited S. pneumoniae proliferation with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 6 µg/ml. Vitamin K3 disrupted the Z-ring localization in both S. pneumoniae and Bacillus subtilis within 30 min of treatment, while the membrane integrity and nucleoid segregation remain unchanged. Several complementary experiments showed that Vitamin K3 inhibits the assembly of purified S. pneumoniae FtsZ (SpnFtsZ) and induces conformational changes in the protein. Interestingly, Vitamin K3 interfered with GTP binding onto FtsZ and increased the GTPase activity of FtsZ polymers. The intrinsic tryptophan fluorescence of SpnFtsZ revealed that Vitamin K3 delays the nucleation of FtsZ polymers and reduces the rate of polymerization. In the presence of a non-hydrolyzable analog of GTP, Vitamin K3 did not show inhibition of FtsZ polymerization. These results indicated that Vitamin K3 induces conformational changes in FtsZ that increase GTP hydrolysis and thereby, destabilize the FtsZ polymers. Together, our data provide evidence that Vitamin K3 derives its potent anti-pneumococcal activity by inhibiting FtsZ assembly.


Asunto(s)
Streptococcus pneumoniae , Vitamina K 3 , Bacillus subtilis , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Guanosina Trifosfato/metabolismo , Polímeros/metabolismo , Streptococcus pneumoniae/metabolismo , Vitamina K 3/metabolismo
11.
Int J Biol Macromol ; 214: 22-32, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709872

RESUMEN

High pollution and low productivity of the traditional method for synthesis of vitamin group K require an efficient, low-cost, and environmentally sustainable biocatalyst as a greener process. These have encouraged us to design and fabricate a series of novel Co NPs impregnated pectin-gelatin (Co@PTNC, Co@GTNC & Co@PT0.7GT0.3NC) and grafted pectin-gelatin modified magnetic beads (Co@MPT0.7GT0.3NC) by the in situ reduction-precipitation procedure and chemical application in the selective synthesis of vitamin K3 without any promoters or ligands. The chemical structure and morphological properties were fully characterized. Additionally, the influence of structural parameters (i.e., kind of stabilizer with different ratio (nPT/nGT), amount of Co loading, durability, size, distribution, and Leaching test) and operating parameters (i.e., reaction time, reaction temperature, nature of the solvent, and concentration of oxidant) on the efficacy of the biocatalysts was evaluated in detail. The green synthesis involves several advantages, like the heterogeneous nature of catalysts, environmentally-friendly and mild conditions, high recovery efficiency due to superparamagnetism, high activity, and the sustainable performance of the biocatalyst.


Asunto(s)
Gelatina , Pectinas , Catálisis , Gelatina/química , Pectinas/química , Temperatura , Vitamina K 3
12.
Food Funct ; 13(11): 6362-6372, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35612417

RESUMEN

An 8-week feeding experiment was conducted to appraise the influence of dietary vitamin K3 on the growth performance, antioxidant capacities, immune responses, mitophagy and glucose metabolism in Litopenaeus vannamei. Six diets containing graded dietary vitamin K3 (0.40(control), 9.97, 20.29, 39.06, 79.81 and 156.02 mg kg-1 of vitamin K3, respectively) levels were formulated. A total of 900 shrimp with 0.90 g initial weight were randomly assigned to six diets with three replications. Our results revealed that diets supplemented with 9.97-156.02 mg kg-1 vitamin K3 didn't affect the growth performance in L. vannamei. In general, compared with the control group, 39.06 mg kg-1 vitamin K3 group significantly increased (P < 0.05) the total antioxidative capacity, and the activities of catalase, glutathione, nitric oxide synthase, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. 39.06 mg kg-1 vitamin K3 group significantly decreased (P < 0.05) the malondialdehyde in serum and hepatopancreas. The mRNA levels of antioxidant and immune related genes were increased synchronously (P < 0.05). In addition, 39.06 mg kg-1 vitamin K3 group increased glycogen content and levels of mitophagy (pink1, ampkα, parkin, lc3, atg13, atg12) genes. Expression levels of glucose transport related gene (glut1), glycolysis related genes (hk, pfk), glycogen synthesis related genes (gsk-3ß, gys), insulin-like peptides (ILPs)/AKT/PI3K pathway related genes (insr, irsl, akt, pi3k, pdpk1) were increased in the hepatopancreas of 39.06 mg kg-1 vitamin K3 group. In conclusion, the present results indicated that although dietary supplementing vitamin K3 had no influence on the growth performance, 39.06 mg kg-1 vitamin K3 could activate ampkα/pink1/parkin mediated mitophagy, improve antioxidant capacity and immune response. Moreover, vitamin K3 could trigger ILPs/AKT/PI3K signaling pathways and influence glucose metabolism in L. vannamei. This finding would help to advance the field of vitamin K3 nutrition and guide the development of future crustacean feeds.


Asunto(s)
Antioxidantes , Penaeidae , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Dieta , Suplementos Dietéticos/análisis , Glucosa , Glucógeno , Glucógeno Sintasa Quinasa 3 beta , Inmunidad Innata , Mitofagia , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Ubiquitina-Proteína Ligasas , Vitamina K 3
13.
Anim Sci J ; 93(1): e13706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35266246

RESUMEN

This study was to examine the effects of dietary vitamin K (VK) 3 supplementation on immune-related substances in milk, oxidative stress indices in plasma and VK1, and menaquinone 4 (MK-4) in plasma and milk in periparturient dairy cows. Forty healthy perinatal Holstein-Friesian dairy cows were used in this study. Twenty-one animals were randomly selected and categorized into the VK3 supplemented (50 mg/day/head as VK3) group; the remaining 19 were categorized into the control group. On day 3 after calving, blood and milk were sampled, and their chemical components were determined. The VK3 supplemented group had significantly higher menaquinone 4 levels in plasma and milk on day 3 postpartum than the control group. In addition, there was a significant increase in the immunoglobulin G (IgG) level in milk. VK3 may be absorbed from the gastrointestinal tract and converted to MK-4, the biologically active form of VK, in the mammary gland and other tissues. It was thought that the increase in MK-4 level in plasma and milk induced an increase in the concentration of IgG in milk. VK3 supplementation to periparturient dairy cows may contribute to the production of colostrum with high concentrations of IgG and MK-4.


Asunto(s)
Calostro , Vitamina K 3 , Animales , Bovinos , Calostro/química , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Inmunoglobulina G/análisis , Lactancia , Leche/química , Periodo Posparto , Embarazo , Vitamina K 3/análisis
14.
Anim Sci J ; 93(1): e13680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35029011

RESUMEN

The effect of dietary vitamin K3 (VK3) on ruminant animals is not fully investigated. The aim of this study was to examine the effects of dietary VK3 on lactation performance, rumen characteristics, and VK1 and menaquinone (MK, or VK2) dynamics in the rumen, plasma, and milk of dairy cows. Eight Holstein dairy cows in late lactation periods were used in two crossover trials including a control (nontreatment) and a 50 or 200 mg/day (d) VK3 supplementation group. After 14 days, plasma, ruminal fluid, and milk were sampled and their VK1 and MKs contents were measured using fluorescence-high-performance liquid chromatography (HPLC). Milk production was unchanged after feeding 50 mg/day VK3 but marginally decreased after feeding 200 mg/day VK3. The molar ratio of propionate in ruminal fluid was significantly increased on feeding 200 mg/day VK3. Additionally, MK-4 concentrations significantly increased in both plasma and milk after VK3 feeding (50 and 200 mg/day). In ruminal fluid, MK-4 concentrations increased after 200 mg/day VK3 feeding. These results suggest that VK3 may be a good source of MK-4, the biologically active form of VK, in Holstein dairy cows during their late lactation periods. This study provides a basis for understanding the physiological role of VK in dairy cows.


Asunto(s)
Alimentación Animal , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión , Femenino , Fermentación , Lactancia , Leche , Rumen/metabolismo , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo , Vitamina K 2/farmacología , Vitamina K 3/metabolismo
15.
Anticancer Agents Med Chem ; 22(13): 2411-2418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34875993

RESUMEN

BACKGROUND: Colon cancer is one of the most important causes of death in the entire world. New pharmacological strategies are always needed, especially in resistant variants of this pathology. We have previously reported that drugs such as menadione (MEN), D, L-buthionine-S,R-sulfoximine or calcitriol, used in combination, enhanced cell sensibility of breast and colon tumour models, due to their ability to modify the oxidative status of the cells. Melatonin (MEL), a hormone regulating circadian rhythms, has anti-oxidant and anti-apoptotic properties at low concentrations, while at high doses, it has been shown to inhibit cancer cell growth. OBJECTIVE: The objective of this study is to determine the antitumoral action of the combination MEN and MEL on colon cancer cells. METHODS: Caco-2 cells were employed to evaluate the effects of both compounds, used alone or combined, on cellular growth/morphology, oxidative and nitrosative stress, and cell migration. RESULTS: MEN plus MEL dramatically reduced cell proliferation in a time and dose-dependent manner. The antiproliferative effects began at 48 h. At the same time, the combination modified the content of superoxide anion, induced the formation of reactive nitrogen species and enhanced catalase activity. Cell migration process was delayed. Also, changes in nuclear morphology consistent with cell death were observed. CONCLUSION: The enhanced effect of simultaneous use of MEN and MEL on Caco-2 cells suggests that this combined action may have therapeutic potential as an adjuvant on intestinal cancer acting in different oncogenic pathways.


Asunto(s)
Neoplasias del Colon , Melatonina , Antioxidantes/metabolismo , Antioxidantes/farmacología , Butionina Sulfoximina/farmacología , Células CACO-2 , Neoplasias del Colon/tratamiento farmacológico , Humanos , Melatonina/farmacología , Estrés Oxidativo , Vitamina K 3/farmacología
16.
Pest Manag Sci ; 78(3): 974-981, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34738317

RESUMEN

BACKGROUND: Botrytis cinerea, the causal agent of gray mold has a great economic impact on several important crops. This necrotrophic fungus causes disease symptoms during vegetative growth and also into postharvest stages. The current method to combat this disease is fungicide application, with high economic costs and environmentally unsustainable impacts. Moreover, there is an increasing general public health concern about these strategies of crop protection. We studied the protection of tomato plants against B. cinerea by previous root treatment with menadione sodium bisulfite (MSB), a known plant defense activator. RESULTS: Root treatment 48 h before inoculation with MSB 0.6 mmol L-1 reduced leaf lesion diameter by 30% and notably cell deaths, compared to control plants 72 h after inoculation. We studied the expression level of several pathogenesis-related (PR) genes from different defense transduction pathways, and found that MSB primes higher PR1 expression against B. cinerea. However, this stronger induced resistance was impaired in transgenic salicylic acid-deficient NahG line. Additionally, in the absence of pathogen challenge, MSB increased tomato plant growth by 28% after 10 days. Our data provide evidence that MSB protects tomato plants against B. cinerea by priming defense responses through the salicylic acid (SA)-dependent signaling pathway and reducing oxidative stress. CONCLUSION: This work confirms the efficacy of MSB as plant defense activator against B. cinerea and presents a novel alternative to combat gray mold in important crops.


Asunto(s)
Fungicidas Industriales , Solanum lycopersicum , Botrytis , Resistencia a la Enfermedad , Fungicidas Industriales/farmacología , Regulación de la Expresión Génica de las Plantas , Humanos , Enfermedades de las Plantas , Vitamina K 3
17.
Molecules ; 26(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072474

RESUMEN

Ficus deltoidea var. deltoidea is used as traditional medicine for diabetes, inflammation, and nociception. However, the antimutagenic potential and cytoprotective effects of this plant remain unknown. In this study, the mutagenic and antimutagenic activities of F. deltoidea aqueous extract (FDD) on both Salmonella typhimurium TA 98 and TA 100 strains were assessed using Salmonella mutagenicity assay (Ames test). Then, the cytoprotective potential of FDD on menadione-induced oxidative stress was determined in a V79 mouse lung fibroblast cell line. The ferric-reducing antioxidant power (FRAP) assay was conducted to evaluate FDD antioxidant capacity. Results showed that FDD (up to 50 mg/mL) did not exhibit a mutagenic effect on either TA 98 or TA 100 strains. Notably, FDD decreased the revertant colony count induced by 2-aminoanthracene in both strains in the presence of metabolic activation (p < 0.05). Additionally, pretreatment of FDD (50 and 100 µg/mL) demonstrated remarkable protection against menadione-induced oxidative stress in V79 cells significantly by decreasing superoxide anion level (p < 0.05). FDD at all concentrations tested (12.5-100 µg/mL) exhibited antioxidant power, suggesting the cytoprotective effect of FDD could be partly attributed to its antioxidant properties. This report highlights that F. deltoidea may provide a chemopreventive effect on mutagenic and oxidative stress inducers.


Asunto(s)
Antimutagênicos/química , Antioxidantes/química , Ficus/metabolismo , Extractos Vegetales/química , Animales , Aniones , Línea Celular , Cricetulus , Diabetes Mellitus , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glutatión , Ratones , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad , Mutágenos , Estrés Oxidativo , Salmonella typhimurium/efectos de los fármacos , Sales de Tetrazolio/química , Tiazoles/química , Vitamina K 3/química , Agua
18.
Microbiol Res ; 248: 126753, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33882376

RESUMEN

Menadione (MND) is known to induce oxidative stress in fungal cells. Here, we explore how exposure to this molecule alters conidial enzyme activities, fungal efficacy against Rhipicephalus microplus, and mycelial secretion (secretome) of an isolate of Metarhizium anisopliae sensu lato. First, the fungus was exposed to different MND concentrations in potato-dextrose-agar (PDA) to determine the LC50 by evaluating conidia germination (38µM). To ensure high cell integrity, a sublethal dose of MND (half of LC50) was added to solid (PDA MND) and liquid media (MS MND). Changes in colony growth, a slight reduction in conidia production, decreases in conidial surface Pr1 and Pr2 activities as well as improvements in proteolytic and antioxidant (catalase, superoxide dismutase, and peroxidase) conidial intracellular activities were observed for PDA MND conidia. Additionally, PDA MND conidia had the best results for killing tick larvae, with the highest mortality rates until 15 days after treatment, which reduces both LC50 and LT50, particularly at 108 conidia mL-1. The diversity of secreted proteins after growth in liquid medium + R. microplus cuticle (supplemented or not with half of MND LC50), was evaluated by mass spectrometry-based proteomics. A total of 654 proteins were identified, 31 of which were differentially regulated (up or down) and mainly related to antioxidant activity (catalase), pathogenicity (Pr1B, Pr1D, and Pr1K), cell repair, and morphogenesis. In the exclusively MS MND profile, 48 proteins, mostly associated with cellular signaling, nutrition, and antioxidant functions, were distinguished. Finally, enzymatic assays were performed to validate some of these proteins. Overall, supplementation with MND in the solid medium made conidia more efficient at controlling R. microplus larvae, especially by increasing, inside the conidia, the activity of some infection-related enzymes. In the liquid medium (a consolidated study model that mimics some infection conditions), proteins were up- and/or exclusively-regulated in the presence of MND, which opens a spectrum of new targets for further study to improve biological control of ticks using Metarhizium species.


Asunto(s)
Proteínas Fúngicas/metabolismo , Metarhizium/efectos de los fármacos , Metarhizium/patogenicidad , Control Biológico de Vectores/métodos , Rhipicephalus/microbiología , Esporas Fúngicas/enzimología , Virulencia/efectos de los fármacos , Vitamina K 3/farmacología , Animales , Proteínas Fúngicas/genética , Larva/crecimiento & desarrollo , Larva/microbiología , Metarhizium/enzimología , Metarhizium/genética , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/genética , Peroxidasa/metabolismo , Rhipicephalus/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Vitamina K 3/análisis
19.
Gut Microbes ; 13(1): 1-16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651646

RESUMEN

Vitamins have well-established roles in bacterial metabolism. Menaquinones (MKn, n = prenyl units in sidechain) are bacterially produced forms of vitamin K produced by the gut microbiota and consumed in the diet. Little is known about the influence of dietary vitamin K quinones on gut microbial composition and MKn production. Here, male and female C57BL6 mice were fed a vitamin K deficient diet or vitamin K sufficient diets containing phylloquinone (PK, plant-based vitamin K form), MK4, and/or MK9. DNA was extracted from cecal contents and 16S sequencing conducted to assess microbial composition. Cecal microbial community composition was significantly different in vitamin K deficient female mice compared to females on vitamin K sufficient diets (all p < .007). Parallel trends were seen in male mice, but were not statistically significant (all p > .05 but <0.1). Next, stable isotope-labeled vitamin K quinones were supplemented to male and female C57BL6 mice (2H7PK, 13C11MK4, 2H7MK7, 2H7MK9) and to an in vitro fermentation model inoculated with human stool (2H7PK, 2H7MK4, 2H7MK9, or vitamin K precursor 2H8-menadione). Vitamin K quinones in feces and culture aliquots were measured using LC-MS. In vivo, supplemented vitamin K quinones were remodeled to other MKn (2H7- or 13C6-labeled MK4, MK10, MK11, and MK12), but in vitro only the precursor 2H8-menadione was remodeled to 2H7MK4, 2H7MK9, 2H7MK10, and 2H7MK11. These results suggest that dietary vitamin K deficiency alters the gut microbial community composition. Further studies are needed to determine if menadione generated by host metabolism may serve as an intermediate in dietary vitamin K remodeling in vivo.


Asunto(s)
Bacterias/metabolismo , Ciego/microbiología , Suplementos Dietéticos , Microbioma Gastrointestinal/fisiología , Vitamina K/administración & dosificación , Vitaminas/administración & dosificación , Adulto , Animales , Bacterias/crecimiento & desarrollo , Reactores Biológicos , Dieta , Heces/microbiología , Femenino , Fermentación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Vitamina K 2/metabolismo , Vitamina K 3/metabolismo , Deficiencia de Vitamina K/microbiología , Adulto Joven
20.
Eur J Med Chem ; 209: 112859, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010635

RESUMEN

Tuberculosis (TB) is one of the most fatal diseases and is responsible for the infection of millions of people around the world. Most recently, scientific frontiers have been engaged to develop new drugs that can overcome drug-resistant TB. Following this direction, using a designed scaffold based on the combination of two separate pharmacophoric groups, a series of menadione-derived selenoesters was developed with good yields. All products were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv and attractive results were observed, especially for the compounds 8a, 8c and 8f (MICs 2.1, 8.0 and 8.1 µM, respectively). In addition, 8a, 8c and 8f demonstrated potent in vitro activity against multidrug-resistant clinical isolates (CDCT-16 and CDCT-27) with promising MIC values ranging from 0.8 to 3.1 µM. Importantly, compounds 8a and 8c were found to be non-toxic against the Vero cell line. The SI value of 8a (>23.8) was found to be comparable to that of isoniazid (>22.7), which suggests the possibility of carrying out advanced studies on this derivative. Therefore, these menadione-derived selenoesters obtained as hybrid compounds represent promising new anti-tubercular agents to overcome TB multidrug resistance.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Selenio/farmacología , Vitamina K 3/farmacología , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Chlorocebus aethiops , Humanos , Modelos Moleculares , Selenio/química , Tuberculosis/tratamiento farmacológico , Células Vero , Vitamina K 3/análogos & derivados , Vitamina K 3/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA